Experiment No. 2	VERIFICATION OF KIRCHHOFF'S LAWS
Date:	

Aim:

To verify Kirchhoff's current law and Kirchhoff's voltage law for the given Circuit.

Apparatus: This kit consists of

- 1. Regulated power supplies
 - a. Variable power supply 0 to +15V ----- 2Nos
 - b. Fixed power supply 0 to +15V ---- 1No
- 2. Resistor Bank
- 3. Required circuitry for the experiments

Theory:

Kirchhoff's laws:

1. Kirchhoff's Current law:

"In any circuit, the algebraic sum of the currents meeting at a point (or junction) is zero."

$$\Sigma I = 0$$

2. Kirchhoff's Voltage law:

"The algebraic sum of the products of currents and resistances in each of the conductors in any closed path (or mesh) in a network plus the algebraic sum of the e.m.fs in a path is zero."

$$\sum IR + \sum e.m.f = 0$$

Kirchhoff's Current law:

- 1. Connect variable power supply 0 to +15 V either from CH2 in the Kirchhoff's Current law circuit between the points 1 & 2.
- 2. Connect ammeters (0 200mA) between points 3 & 4, 5 & 6, 9 & 10, 11 & 12 and 15 & 16

Note: If five meters are not available for measuring current then for measuring one meter other current meter points should be shorted. For example, to measure **I** connect ammeter between 3 & 4 and short remaining all current meter points. Again, to measure **I1** connect ammeter between 5 & 6 and short remaining current meter points. Similarly, for measuring other currents.

- 3. Connect resistors from resistor bank in the circuit in place of R1, R2, R3 & R4
- 4. For the different values of input voltage measure the currents flowing in the circuit.
- 5. Note down the values of all currents in a tabular form.
- 6. From the above table it is observed that

$$I = I1 + I2 + I3 + I4$$

KCL - Theoretical Values:

S.No.	Voltage	Current	$I = I_{1+} I_{2+}$			
		I1	I2	I3	I4	I3+I4
	Volts	mA	mA	mA	mA	mA
1	4					
2	6					
3	8					
4	10					

KCL - Practical Values:

S.No.	Source	Current		I=I1+I2+I3+I4		
	Voltage	I1	I2	I3	I4	
	Volts	mA		mA	mA	mA
			mA			
1	4					
2	6					
3	8					
4	10					

Kirchhoff's Voltage law:

- 1. Connect variable power supply 0 to +15 V from CH2 in the Kirchhoff's voltage law circuit between the points 1 & 2.
- 2. Connect voltmeters (0 20V) between points 3 & 4, 5 & 6, 7 & 8, Note: If three meters are not available for measuring voltage then for measuring one-meter other voltmeter points should be opened. For example, tomeasure V1 connect ammeter between 3 & 4 and open remaining all voltmeterpoints. Again, to measure V2 connect ammeter between 5 & 6 and open remaining current meter points. Similarly, for measuring other voltages.
- 3. Connect resistors from resistor bank in the circuit in place of R1, R2, and R3.
- 4. For the different values of input voltage measure the voltages across the resistors in the circuit.
- 5. Note down the values of all voltages in a tabular form.
- 6. From the above table it is observed that

$$V = V1 + V2 + V3$$

KVL – Theoretical Values

S.No.		Voltag	Total Voltage		
	V	V ₁	V2	V3	$V_1 = V_1 + V_2 + V_3$
	Volts	Volts	Volts	Volts	
1	4				
2	6				
3	8				
4	10				

KVL - Practical Values

S.No.		Voltag	e		Total Voltage
	V	V ₁	V2	V3	$V_1 = V_1 + V_2 + V_3$
	Volts	Volts	Volts	Volts	
1	4				
2	6				
3	8				
4	10				

Precautions:

- 1. Readings should be taken without parallax error.
- 2. Meter connected to the circuit with proper polarities.
- 3. While changing/removing the connections on the kit supply to be turned off.

Result:

Thus Kirchhoff's voltage law and Kirchhoff's current law Verified both theoretically and practically.

VIVA QUESTIONS:

- 1. What is current?
- 2. What is voltage?
- 3. What is resistance?
- 4. What is ohm's law?
- 5. What is KCL and KVL?
- 6. What do you mean by junction?
- 7. What directions should be assumed for KCL?
- 8. What are the positive and negative signs in KVL?
- 9. What is the colour coding of resistors?
- 10. What are the precautions to be taken while doing the experiment?
- 11. What is the range of ammeters and voltmeters you used in this experiment